The polarization compass dominates over idiothetic cues in path integration of desert ants.

نویسندگان

  • Fleur Lebhardt
  • Julja Koch
  • Bernhard Ronacher
چکیده

Desert ants, Cataglyphis, use the sky's pattern of polarized light as a compass reference for navigation. However, they do not fully exploit the complexity of this pattern, rather - as proposed previously - they assess their walking direction by means of an approximate solution based on a simplified internal template. Approximate rules are error-prone. We therefore asked whether the ants use additional cues to improve the accuracy of directional decisions, and focused on 'idiothetic' cues, i.e. cues based on information from proprioceptors. We trained ants in a channel system that was covered with a polarization filter, providing only a single e-vector direction as a directional 'celestial' cue. Then we observed their homebound runs on a test field, allowing full view of the sky. In crucial experiments, the ants were exposed to a cue conflict, in which sky compass and idiothetic information disagreed, by training them in a straight channel that provided a change in e-vector direction. The results indicated that the polarization information completely dominates over idiothetic cues. Two path segments with different e-vector orientations are combined linearly to a summed home vector. Our data provide additional evidence that Cataglyphis uses a simplified internal template to derive directional information from the sky's polarization pattern.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating two-dimensional paths: do desert ants process distance information in the absence of celestial compass cues?

When performing foraging trips desert ants of the genus Cataglyphis continuously process and update a ;home vector' that enables them to return to their nest on the shortest route. This capacity of path integration requires two types of information: (i) information about the travelling directions, and (ii) odometric information about the distances travelled in a particular direction. We have in...

متن کامل

Desert ants do not rely on sky compass information for the perception of inclined path segments.

On their foraging excursions, desert ants (Cataglyphis fortis) navigate by means of path integration, exhibiting high precision even in undulating terrain. To avoid errors in their home vector the ants must measure the slopes of ascents and descents in their itinerary. This information is necessary to convert the distances actually walked on the slopes into the ground distance, which is the cru...

متن کامل

Specialized detectors for polarized skylight in the insect retina

Insect navigation relies on path integration, a procedure by which information about compass bearings pursued and distances travelled are combined to calculate position. Three neural levels of the polarization compass, which uses the polarization of skylight as a reference, have been analyzed in orthopteran insects. A group of dorsally directed, highly specialized ommatidia serve as polarizatio...

متن کامل

Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti.

Many animal species, including some social hymenoptera, use the visual system for navigation. Although the insect compound eyes have been well studied, less is known about the second visual system in some insects, the ocelli. Here we demonstrate navigational functions of the ocelli in the visually guided Australian desert ant Melophorus bagoti. These ants are known to rely on both visual landma...

متن کامل

Combining sky and earth: desert ants (Melophorus bagoti) show weighted integration of celestial and terrestrial cues.

Insects typically use celestial sources of directional information for path integration, and terrestrial panoramic information for view-based navigation. Here we set celestial and terrestrial sources of directional information in conflict for homing desert ants (Melophorus bagoti). In the first experiment, ants learned to navigate out of a round experimental arena with a distinctive artificial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 215 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2012